Silver and Sulfur: Case Studies, Physics, and Possible Solutions

C. Hillman, S. Binfield, J. Seppi, and J. Arnold
DfR Solutions
April 15, 2009
Introduction

- Silver is a common metal in electronics
 - Along with gold, copper, and solder
- Tendency to migrate
 - Driven by oxidation behavior in presence of moisture + bias
- Industry response
 - Additional test requirements
 - Alloying with noble metals (Ag + Pd)
- Concerns with sulfidation a more recent phenomenon
Silver Sulfidation

- Also known as sulfuration
 - Well known in museum and conservation studies
- Initiates through the reduction of hydrogen sulfide (H₂S) or carbonyl sulfide (COS) to HS⁻
- Two potential subsequent reactions in an aqueous solution
 - HS⁻ can react directly with silver ions that have oxidized
 - HS⁻ can absorb to the surface, reacting to form a sulfide salt
- Presence of oxidizing species (i.e., Cl) can increase corrosion rate
- Principal product of HS⁻ and silver is silver sulfide (Ag₂S)
 - Also known as acanthite (monoclinic)
Case Studies

- Classic problem-solving approach in business education
- Four case studies of sulfidation of silver
 - Corrosion Behavior and Mixed Flowing Gas (MFG)
 - Sulfur Attack of Silicone Encapsulated Hybrid Circuit
 - Elevated Resistance of Surface Mount Resistors
 - Creepage Corrosion on Immersion Silver Plated PCBs
- Provides a path for discussion of physics of this mechanism
 - Initial reaction, influence of environment, etc.
Corrosion Behavior and MFG

- Corrosion coupon plated with immersion silver
 - No solder mask
 - Two arrays
- Preconditioning
 - 2X Reflow
 - 1X Wave
- 30 coupons
 - Up to 10 days exposure

<table>
<thead>
<tr>
<th>Class</th>
<th>RH (%)</th>
<th>Temp (ºC)</th>
<th>H₂S (ppb)</th>
<th>Cl₂ (ppb)</th>
<th>NO₂ (ppb)</th>
<th>SO₂ (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>II</td>
<td>70±2</td>
<td>30±2</td>
<td>10±5</td>
<td>10±3</td>
<td>200±50</td>
<td>-----</td>
</tr>
<tr>
<td>IIA</td>
<td>70±2</td>
<td>30±1</td>
<td>10±5</td>
<td>10±3</td>
<td>200±50</td>
<td>100±20</td>
</tr>
<tr>
<td>III</td>
<td>75±2</td>
<td>30±2</td>
<td>100±20</td>
<td>20±5</td>
<td>200±50</td>
<td>-----</td>
</tr>
<tr>
<td>IIIA</td>
<td>70±2</td>
<td>30±1</td>
<td>100±20</td>
<td>20±5</td>
<td>200±50</td>
<td>200±50</td>
</tr>
<tr>
<td>IV</td>
<td>75±2</td>
<td>40±2</td>
<td>200±20</td>
<td>30±5</td>
<td>200±50</td>
<td>-----</td>
</tr>
</tbody>
</table>

Gas concentrations for EIA MFG standards. IIA was used for the solderability testing.
Results

Weight gain provides strong evidence of chemical reaction
- 3X weight gain compared to SnPb HASL coupons

Change in SIR likely due to moisture absorption
- Absolute SIR still above 1×10^{12} ohms
Results (cont.)

- Strong black color change after exposure
 - Consistent with sulfidation
 - Ag₂S is black
- Detection of chloride and sulfide
 - Could suggest presence of AgCl
- AgCl is white, but exposure to light can cause disassociation into chlorine and silver
 - Metallic silver is gray-black
- **Note:** No migration products
Sulfur Attack of Encapsulated Hybrid

- Silicone encapsulant, ceramic hybrid
- Used in industrial controls
- Customer reported failures after 12 to 36 months in the field
- X-ray identified several separations

‘Good’ hybrid

‘Bad’ hybrid
Encapsulated Hybrid (cont.)

- Silicone encapsulant was removed using Dynasol
- Visual inspection revealed black corrosion product throughout the hybrid
 - Most severe in areas with no solder or solder mask covering silver thick film traces
 - Attack through the solder mask in some locations
Sulfur Corrosion Sites
Elemental Analysis

- Sulfur and silver peaks detected
- **Note**: No migration products were observed
Corrective Actions

- Manufacturer added a silicone coating under the silicone potting
 - Will this help?
- Possibly
 - Corrosion primarily occurred in areas where silver thick film traces were exposed
 - Additional coating should slow the reaction sufficiently to provide desired lifetime
- Silicone potting was not successful in preventing sulfidation
 - Silicone coating will have the same open structure (porous)
 - Could allow penetration of corrosive gases (e.g., H2S)
Elevated Resistance of SMT Resistors

- Several field issues reported in thick film resistors
 - Use silver as the base conductor (cost, stability, oxide resistance, compatibility with ruthenium oxide)

- Failures reported in environments with high levels of sulfur-based gases
 - E.g., hydrogen sulfide (H2S), sulfur dioxide (SO2), and carbonyl sulfide (COS),

 - Failure mode is increasing resistance (electrical open)
SMT Resistors (cont.)

- Sulfur attack of silver occurs at the abutment of the glass passivation layer and the resistor termination
 - Cracks or openings can allow the ingress of corrosive gases,
 - Reaction with the silver to form silver sulfide (Ag2S)
- Large change in resistance
 - $\rho_{\text{Ag}} = 10^{-8}$ ohm-m;
 - $\rho_{\text{Ag2S}} = 10$ ohm-m
 - Up 20K ohms (0.01 x 0.01 x 0.5mm)
- Manufacturers’ solutions
 - Sulfur tolerant – silver alloys
 - Sulfur resistant – silver replacement
SMT Resistors (Observations)

- This mode of sulfur corrosion displayed two interesting behaviors.
- First: Extended time to failure (1 - 4 years)
- Second: Observation that a majority of failures occurred in assemblies that were encapsulated in silicone
 - Silicone structure could act as a ‘sponge’ for sulfur-based gases.
 - Behavior is not uncommon for gases and polymeric compounds; observed with water molecules and epoxy resins
- In epoxies, water can exist in two forms (bound and unbound)
 - Bound molecules are attracted to the polymer chains through hydrogen bonding and become immobilized.
- If ‘bounding’ exists with H2S or SO2 and silicone, it may provide the gases time to react with the silver conductor
 - Alternate theory: Presence of moisture and H2S / SO2 in silicone create aggressive chemistry
Corrosion of Immersion Silver

- Recent field issues with printed circuit boards (PCBs) plated with immersion silver
 - Sulfur-based creepage corrosion
- Failures in customer locations with elevated levels of sulfur-based gases
 - Rubber manufacturing
 - Sewage/waste-water treatment plants
 - Vehicle exhaust fumes (exit / entrance ramps)
 - Petroleum refineries
 - Coal-generation power plants
 - Paper mills
 - Landfills
 - Large-scale farms
 - Automotive modeling studios
 - Swamps

P. Mazurkiewicz, ISTFA 2006
Case Study Discussion (Creepage Corrosion)

- Creepage in field
- No creepage under Class II MFG
- Creepage under Class III?
 - Sometimes (Veale; Hillman)
- Strong indication that creepage mechanism requires that one or more MFG test parameters are exceeded
 - Especially %RH
 - Hillman: >75%RH
 - Cullen: 93%RH
- How must MFG be modified to replicate field issues?

<table>
<thead>
<tr>
<th>Class</th>
<th>RH (%)</th>
<th>Temp (°C)</th>
<th>H₂S (ppb)</th>
<th>Cl₂ (ppb)</th>
<th>NO₂ (ppb)</th>
<th>SO₂ (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>II</td>
<td>70±2</td>
<td>30±1</td>
<td>10±5</td>
<td>10±3</td>
<td>200±50</td>
<td>----</td>
</tr>
<tr>
<td>IIA</td>
<td>70±2</td>
<td>30±1</td>
<td>10±5</td>
<td>10±3</td>
<td>200±50</td>
<td>100±20</td>
</tr>
<tr>
<td>III</td>
<td>75±2</td>
<td>30±2</td>
<td>100±20</td>
<td>20±5</td>
<td>200±50</td>
<td>----</td>
</tr>
<tr>
<td>IIIA</td>
<td>70±2</td>
<td>30±1</td>
<td>100±20</td>
<td>20±5</td>
<td>200±50</td>
<td>200±50</td>
</tr>
<tr>
<td>IV</td>
<td>75±2</td>
<td>40±2</td>
<td>200±20</td>
<td>30±5</td>
<td>200±50</td>
<td>----</td>
</tr>
</tbody>
</table>
MFG Test Structures

- Influence of solder mask
 - Field: Creepage primarily on solder mask defined (SMD) pads
 - Test: Delay in creepage on non-solder mask defined pads (NSMD)
- Similar mechanism observed with electroless nickel / immersion gold (ENIG) plating
 - Corrosion of copper trace at solder mask edge
- Potential mechanisms
 - Solder mask absorption of sulfur-based gases
 - Crevice corrosion (depletion of oxygen)
 - Entrapment of flux residues
MFG Test Conditions

- Are existing MFG test conditions still relevant?
 - Different material system (silver, not copper)
 - Changing environment (is there more / less pollution?)

![SO2 Air Quality, 1980–1999](chart.png)
MFG Test Conditions (Sulfur-Based Gases)

SO2
- **MFG Test**
 - 100ppb, 200ppb
- **Average annual outdoor**
 - 2-20ppb (USA)
 - 25-100ppb (Asia)
- **24 hour**
 - ~150ppb (NAAQS / Telcordia)
 - 150-600ppb (Industrial-USA)
 - 100-1500ppb (Asia)
- **May not be critical for sulfidation of silver**
 - Rate independent of SO2 concentration

H2S
- **MFG Test**
 - 10ppb, 100ppb, 200ppb
- **Average annual outdoor/indoor**
 - 0.05 to 0.8ppb
- **24 hour (outdoors)**
 - 8 to 100ppb (State Regs)
- **24 hour (indoors)**
 - 500 to 20,000 ppb
- **May be more critical**

<table>
<thead>
<tr>
<th></th>
<th>Clean room</th>
<th>Controlled environment</th>
<th>Rural</th>
<th>Urban with heavy traffic or industrial</th>
<th>Adjacent to industrial</th>
<th>Inside industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO2</td>
<td>100 ug/m³</td>
<td>100</td>
<td>100</td>
<td>1000</td>
<td>10000</td>
<td>40000</td>
</tr>
<tr>
<td></td>
<td>38 ppb</td>
<td>38</td>
<td>38</td>
<td>380</td>
<td>3800</td>
<td>15300</td>
</tr>
<tr>
<td>H2S</td>
<td>1.5</td>
<td>10</td>
<td>10</td>
<td>500</td>
<td>4075</td>
<td>70000</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>4</td>
<td>4</td>
<td>200</td>
<td>28500</td>
<td></td>
</tr>
</tbody>
</table>
Test Conditions (cont.)

Carbonyl Sulfide (COS)

- Ignored by MFG
- Outdoor levels can be higher than H2S
 - Nominal: 0.5 – 0.8 ppb
 - Elevated: 80 ppb
- Can be as corrosive as H2S
Test Conditions (Relative Humidity)

- Influence of %RH somewhat contradictory
- Vernon reported a critical %RH (70-80%)
- Graedel reported an increasing corrosion rate with increasing %RH
 - Driven by monolayers (ml) of moisture
 - \(\ln (\text{ml}) = 2.73 \frac{p}{p_0} - 0.366 \)
 - \(\left(\frac{p}{p_0} \text{ is } %RH \right) \)
- Rice reported no influence of %RH
Relative Humidity

- Validation of Rice’s observation
 - %RH levels in ceramic hybrid and thick film resistors coated with hydrophobic silicone likely low
- Important differentiation by mechanism
 - Most references investigate the tarnish aspect of sulfidation
 - Creepage behavior is likely very sensitive to %RH
- The rough surface of a polymeric material becomes conducive to material transport once micro-condensation within occurs.
 - ‘Filling-in’ of surface pores may greatly reduce the adhesion of the polymer surface
 - Allows forces created by volumetric expansion of corrosion product to ‘push’ the growth out to an adjacent conductor
Discussion

- Modification of MFG test specs may be appropriate
 - Elimination of SO2 gases
 - Increase in H2S concentrations (>200 ppb)
 - Possible intro of COS
 - Elimination or reduction of Cl2
- Speculation that formation of AgCl inhibits sulfidation of silver
 - Elevated Cl2 displays parabolic behavior
 - Elevated H2S displays unlimited growth
Conclusion (Questions to Ask)

- What is the interdependence of %RH, and sulfur gas concentration in regards to the preponderance for creepage corrosion? E.g., does a higher %RH allow for a lower critical H2S concentration?
- What are the influence of surface contaminants (hygroscopic, sources of chlorine, various acids) in terms of concentration and activity?
- Why were the organic inhibitors added to immersion silver to resist tarnishing unable to prevent creepage corrosion?
- Is there a critical sulfur-based gas concentration limit, below which these reactions will not occur?
- Would this critical gas concentration vary as a function of other gases, temperature, or relative humidity?
- What is the role of silicone potting compounds and epoxy solder mask on sulfidation and creepage corrosion?
- What is the potential role of board design and manufacturing processes?
- Is there a test to identify if this is a problem for my products?
- How can this mechanism be prevented in future products with exposed silver metal?
DISCLAIMER
DfR represents that a reasonable effort has been made to ensure the accuracy and reliability of the information within this report. However, DfR Solutions makes no warranty, both express and implied, concerning the content of this report, including, but not limited to the existence of any latent or patent defects, merchantability, and/or fitness for a particular use. DfR will not be liable for loss of use, revenue, profit, or any special, incidental, or consequential damages arising out of, connected with, or resulting from, the information presented within this report.

CONFIDENTIALITY
The information contained in this document is considered to be proprietary to DfR Solutions and the appropriate recipient. Dissemination of this information, in whole or in part, without the prior written authorization of DfR Solutions, is strictly prohibited.

From all of us at DfR Solutions, we would like to thank you for choosing us as your partner in quality and reliability assurance. We encourage you to visit our website for information on a wide variety of topics.

Best Regards,
Dr. Craig Hillman, CEO