Considerations for Test Plan Development

In a previous DfR Solutions insight titled Best Practices in Test Plan Preparation, we discussed some of the most important techniques and philosophies when preparing to develop a testing plan for electronic products. What makes those techniques so powerful is that they are ubiquitous: with any design, reviewing the bill of materials, identifying use environments and assessing failure history are both applicable and crucial.

However, what that article did not discuss is that there are considerations that need to be applied in very specific ways. The following are strategies for test plan development that are dependent on specific use cases, parameters, goals, configurations and limitations. While they are just as powerful as our Best Practices, they require a thorough understanding of your product and a clear and agreed-upon set of goals throughout the supply chain.

Topic: Electronics Reliability, electronics test design, Mechanical Design, Reliability Physics, Standards Based Testing

Read More

Best Practices in Test Plan Preparation

Product test plans are critical to the success of a new product or technology. Preparing a viable test plan involves several steps to properly identify the requirements for the tests. While many test parameters will vary from product to product, there are elements of the methodology for a test plan approach that remain consistent. These include the necessity for a BOM review to determine part limitations, assessing the field environmental conditions so they can be properly mapped to the tests implemented, and the impact of failure history, should it exist. The objective is to develop a test plan that does not stress the assembly to a level where a failure might not be experienced in the field.

Topic: Electronics Reliability, electronics test design, Mechanical Design, Reliability Physics, Standards Based Testing

Read More

Board Level Reliability Testing: Current Challenges

As the smartphone market has stagnated, semiconductor manufacturers have started to pivot their focus to automotive electronics to find the next large volume growth opportunity. This adjustment is for good reason: while smartphone volumes have not changed in over three years, automotive electronics will be the fastest growing market for integrated circuits until at least 2021.

To be successful in the competitive landscape that is automotive electronics, semiconductor manufacturers must account for differences in how automotive OEMs and their suppliers qualify integrated circuits compared to consumer products. While the differences are numerous, a key factor is the critical importance of board level reliability testing.

Topic: electronics failure, electronics test design, reliability testing, Reliability Physics, Standards Based Testing

Read More

How to Develop Board Level Reliability Test Plan

For semiconductor manufacturers entering the automotive environment, the lack of universal qualifications standards often leads to inconsistent reliability expectations. To be successful in the competitive landscape, semiconductor manufacturers must account for differences in how automotive OEMs and their suppliers qualify integrated circuits compared to consumer products.  A key factor in the qualification process is the critical importance of board level reliability testing. Given the varied requirements and absence of mutually agreed standards, semiconductor manufacturers often struggle to develop a relevant and successful board level reliability test plan.

Topic: DfR Solutions, electronics failure, electronics test design, reliability testing

Read More

A COMPARISON OF THE ISOTHERMAL FATIGUE BEHAVIOR OF SN-AG-CU TO SN-PB SOLDER

 

The movement to Pb-free soldering will result in solder joints that are significantly stiffer than those made of SnPb. This paper presents the results from the first phase of a two-part study to understand and compare the isothermal mechanical fatigue behavior of tin-silver-copper (SnAgCu) solder to that of tin-lead (SnPb) solder. A combination of experiments and finite element analysis was used to compare and predict the durability of SnPb and SnAgCu surface mount solder joints. The experiments were composed of cyclic four-point bend tests of printed wiring board coupons populated with 2512 sized resistors at 5 and 10 Hz. This configuration was chosen so the test would reflect actual electronic products and still be rapidly modeled using finite element analysis (FEA). This frequency should be sufficiently high to minimize solder creep during the testing. The board level strains were verified with strain gauges and the solder joint failures were detected using a high-speed event detector. Tests were conducted at two board level strain values and then modeled in FEA to determine the strains and stresses developed in the solder joint. This information was then used to determine the appropriate cyclic fatigue relationship for both SnAgCu and SnPb solder. The results indicate that at high board level strains SnPb solder out performs SnAgCu solder. However, at lower board level strains the SnAgCu solder out performed SnPb. The second phase of the study involves bend testing at even lower board level strains to characterize the high cycle fatigue behaviors of the solders.

Topic: Solder Joint Fatigue

Read More

Thermal Mechanical Simulations of BGAs for the Automotive Environment

Electric vehicles are practically computers on wheels. New innovations such as active and passive safety systems, electric propulsion, and semi and fully autonomous vehicles have all contributed to an increase in the usage of electronics in automotive applications. More importantly, automotive designers must still adhere to the same size and packaging constraints to ensure vehicles’ size and weight does not increase. To resolve this dilemma, automotive designers often rely on components being tightly placed on both sides of the Printed Circuit Board (PCB) to ensure the most efficient use of board space.

Topic: Sherlock, Sherlock Automated Design Analysis, Reliability Physics

Read More

Preserving Electronic Design IP via Locked IP Model

Many companies work together to design electronic systems. During the qualification process, there is a lot of back and forth between the final users (mostly OEMs or manufacturers) and the suppliers. In the ideal world, the more information that is shared between both parties, the more likely they are to produce reliable and safe products. In reality, two companies can’t openly share all the design details due to intellectual property considerations. The circuit card designer does not want to share the board details with a prospective customer. Simultaneously, to protect new product ideas, the systems integrator may not want to share use environment details with the board designers. The need for both parties to protect their IP and stay competitive makes it hard to collaborate.

Topic: Sherlock Automated Design Analysis, Reliability Physics

Read More

The Best Method to Calculate Risk of Failure and System-level Effects

One of the key problems in today’s electronics industry is the constant changes in needs and deliverables. Today’s electronic devices are smaller and faster and are constantly exposed to changing environmental conditions. With more people putting electronics closer to a human body in the form of wearables such as iPhones, Fitbits, or heart monitors, electronics designers and manufacturers need to ensure the safety and reliability of these devices to avoid costly mistakes.

Here, at DfR Solutions we work with hundreds of electronics manufacturers across industries and have noticed an increasing number of companies reporting early life failures in the field or unexpected failures in tests due to solder fatigue. They're noticing that the classic solder fatigue calculation models do not seem to capture all the possible risks of failure.

Topic: system level effects, Reliability Physics

Read More

The Roles of Reliability and Safety in AV Development


Since the first pedestrian fatality due to an autonomous vehicle in March 2018, there’s been no shortage of discussion and debate over the future of autonomous vehicles and AV testing. 

However, as Dr. Craig Hillman discusses in this month’s issue of SAE’s Autonomous Vehicle Engineering, there’s a critical piece missing from that conversation: the interconnected roles of reliability and safety. In many companies, there tends to be a disconnect between the two departments. And because authority and responsibility (i.e., who does what and who reports to whom) can have such a dramatic impact on hardware and software design cycles, keeping these two departments in silos can have negative effects.


Topic: AV Development

Read More

Are Lithium-Ion Battery Explosions Increasing?

It seems like a month does not go by, without hearing news reports about battery explosions in e-cigs, headphones, smartphones or other electronic gadgets. Granted that stories about explosions are considered newsworthy, but has the statistical rate of battery failures actually gone up in the last few years? Has the impact of battery failures increased and if so, why? And, I am of course talking about Lithium ion batteries, the go-to battery chemistry in rechargeable electronic devices owing to their high energy density. I am certain you do not want to be carrying around a brick for a smartphone.

Topic: Battery Reliability, Battery Safety, Battery Failure, Lithium Ion Battery

Read More