New product development (NPD) is often driven by cost and schedule. In the electronics industry, being first to market with a new technology or product is crucial to its success, and enhanced speed to market is what differentiates world class companies from the rest.
Most of the microcircuits used in Aerospace, Defense and High Performance (ADHP) applications today are commercial-off-the-shelf (COTS) components targeted for markets other than ADHP, with required lifetimes that are typically significantly shorter than those of ADHP applications. COTS component manufacturers evaluate their components’ expected lifetimes in the target applications, but provide little or no information for ADHP applications. Thus, it is the responsibility of the ADHP user to conduct the appropriate analyses and, where necessary, mitigate for shorter-than-required lifetimes.
Global avionics is enjoying a period of rapid growth that, when coupled with the relatively low cost of entry into the industry, makes it a very attractive option for new players. This increasingly crowded and competitive landscape makes it even more important to be first to market with new technologies, which can leave less time for reliability testing.
Product performance and reliability are non-negotiables in defense applications. It’s a statement as true now as it was during World War II, when the U.S. military experienced significant malfunctions in aircraft electronics. Then, reliability engineering was just being introduced and focused on metal fatigue and fracture, and solutions were often time-consuming, expensive and ultimately ineffective. These initial efforts, however, spurred a shift to electronics reliability prediction simulation and testing that served as the basis for the Physics of Failure (PoF) approach that is common in many industries today.