ANSYS DfR reversed_white

Underfill Applications, Materials & Methods

WHAT is UNDERFILL AND WHY is it USEFUL?

Underfill is thermoset epoxies traditionally used in flip chip applications to reduce thermal stresses solder bumps experience due to coefficient of thermal expansion mismatch between a die and the organic substrate. Today, underfills are available in a variety of formulations and are widely used for board level reliability of ball grid array components by reducing thermal and mechanical loads under harsh use environments. Careful consideration to the underfill material properties and intended use environments must be made to assess the relative reliability improvements underfills offer.

Topic: Electronics Reliability, Solder Joint Fatigue, solder joint, Mechanical Design, integrated circuits, Reliability Physics

Read More

Design Review Process

Here at DfR Solutions, we perform hundreds of design review projects a year. Sometimes companies come to us when they are considering a new electronic product and have only the initial designs. In other instances, companies approach us only after their product has already been configured, requesting a review of the final design before moving forward to the manufacturing stage. Ideally for the client, they are in the former group, partnering with us as early in design process as possible. It’s much more efficient (time- and cost-sensitive) to gather all available information and thoroughly check for potential failures of a design before nailing parts down, rather than to complete an assembly only to discover it doesn’t function properly in its use case scenarios.

Topic: Electronics Reliability, electronics test design, Mechanical Design, Reliability Physics, Standards Based Testing

Read More

What's New With Sherlock 6.2?

Working closely with our clients, we receive constant feedback about current challenges facing our industry. This allows us to tailor Sherlock updates to address rapidly developing landscapes as we continuously strive to improve Sherlock to make reliability predictions more accurate and more appropriate to Sherlock users’ needs.

As part of our mission to make Sherlock the most dependable and extensive reliability analysis tool available, we are rolling out an update to our flagship software. The two newest features in Sherlock addresses two key challenges: modeling non-standard BGA layouts and predicting the fatigue life of assemblies utilizing Insulated Metal Substrates (IMS).

Topic: DfR Solutions, Sherlock Automated Design Analysis, reliability testing, Reliability Physics

Read More

Considerations for Test Plan Development

In a previous DfR Solutions insight titled Best Practices in Test Plan Preparation, we discussed some of the most important techniques and philosophies when preparing to develop a testing plan for electronic products. What makes those techniques so powerful is that they are ubiquitous: with any design, reviewing the bill of materials, identifying use environments and assessing failure history are both applicable and crucial.

However, what that article did not discuss is that there are considerations that need to be applied in very specific ways. The following are strategies for test plan development that are dependent on specific use cases, parameters, goals, configurations and limitations. While they are just as powerful as our Best Practices, they require a thorough understanding of your product and a clear and agreed-upon set of goals throughout the supply chain.

Topic: Electronics Reliability, electronics test design, Mechanical Design, Reliability Physics, Standards Based Testing

Read More

Best Practices in Test Plan Preparation

Product test plans are critical to the success of a new product or technology. Preparing a viable test plan involves several steps to properly identify the requirements for the tests. While many test parameters will vary from product to product, there are elements of the methodology for a test plan approach that remain consistent. These include the necessity for a BOM review to determine part limitations, assessing the field environmental conditions so they can be properly mapped to the tests implemented, and the impact of failure history, should it exist. The objective is to develop a test plan that does not stress the assembly to a level where a failure might not be experienced in the field.

Topic: Electronics Reliability, electronics test design, Mechanical Design, Reliability Physics, Standards Based Testing

Read More

Board Level Reliability Testing: Current Challenges

As the smartphone market has stagnated, semiconductor manufacturers have started to pivot their focus to automotive electronics to find the next large volume growth opportunity. This adjustment is for good reason: while smartphone volumes have not changed in over three years, automotive electronics will be the fastest growing market for integrated circuits until at least 2021.

To be successful in the competitive landscape that is automotive electronics, semiconductor manufacturers must account for differences in how automotive OEMs and their suppliers qualify integrated circuits compared to consumer products. While the differences are numerous, a key factor is the critical importance of board level reliability testing.

Topic: electronics failure, electronics test design, reliability testing, Reliability Physics, Standards Based Testing

Read More

Thermal Mechanical Simulations of BGAs for the Automotive Environment

Electric vehicles are practically computers on wheels. New innovations such as active and passive safety systems, electric propulsion, and semi and fully autonomous vehicles have all contributed to an increase in the usage of electronics in automotive applications. More importantly, automotive designers must still adhere to the same size and packaging constraints to ensure vehicles’ size and weight does not increase. To resolve this dilemma, automotive designers often rely on components being tightly placed on both sides of the Printed Circuit Board (PCB) to ensure the most efficient use of board space.

Topic: Sherlock, Sherlock Automated Design Analysis, Reliability Physics

Read More

Preserving Electronic Design IP via Locked IP Model

Many companies work together to design electronic systems. During the qualification process, there is a lot of back and forth between the final users (mostly OEMs or manufacturers) and the suppliers. In the ideal world, the more information that is shared between both parties, the more likely they are to produce reliable and safe products. In reality, two companies can’t openly share all the design details due to intellectual property considerations. The circuit card designer does not want to share the board details with a prospective customer. Simultaneously, to protect new product ideas, the systems integrator may not want to share use environment details with the board designers. The need for both parties to protect their IP and stay competitive makes it hard to collaborate.

Topic: Sherlock Automated Design Analysis, Reliability Physics

Read More

The Best Method to Calculate Risk of Failure and System-level Effects

One of the key problems in today’s electronics industry is the constant changes in needs and deliverables. Today’s electronic devices are smaller and faster and are constantly exposed to changing environmental conditions. With more people putting electronics closer to a human body in the form of wearables such as iPhones, Fitbits, or heart monitors, electronics designers and manufacturers need to ensure the safety and reliability of these devices to avoid costly mistakes.

Here, at DfR Solutions we work with hundreds of electronics manufacturers across industries and have noticed an increasing number of companies reporting early life failures in the field or unexpected failures in tests due to solder fatigue. They're noticing that the classic solder fatigue calculation models do not seem to capture all the possible risks of failure.

Topic: system level effects, Reliability Physics

Read More

3 Real Life Examples Of “After A Failure” Investigations


“After a failure” investigations are typically performed to identify root cause of failure, calculate risk exposure and develop mitigation and remediation solutions. Just like with “before a failure” investigation, there are two specific test methods that could be applied to either of the two categories – non-destructive physical analysis (NPA) and destructive physical analysis (DPA).

Topic: Failure Analysis, reliability testing, Reliability Physics

Read More